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In a number of cases, the analysis of the propagation of small two-dimensional perturba- 
tions in a boundary layer reduces to the solution of a single nonlinear equation relative 
to a certain function dependent on the time and the longitudinal coordinate ~i] If the ampli- 
tude 6 and the wavelength I of the perturbations satisfy the conditions Re -I/s < o<< i, I = 
O(Re -I/2 6-I), where the Reynolds number Re + ~ is determined on the basis of the character- 
istic dimension of the body in the flow, then a two-dimensional flow field in the boundary 
layer can be constructed by solving the Burgers equation [2] for a supersonic flow regime 
and the Benjamin-Ono equation [3, 4] for subsonic velocities of the incoming flow. These 
equations, introduced in [i] by means of asymptotic expansions of the solutions of the com- 
plete system of Navier-Stokes equations, were regarded in [5] as a consequence of a limiting 
transition to high-frequency large-scale perturbations in the theory of free interaction [6-8]. 

i. We will illustrate the derivation of the analogous one-dimensional equation by using 
the example of a perturbed flow in a plane jet of an incompressible fluid bounded by a solid 
wall [9, i0]. We will consider the time t, Cartesian coordinates x and y, velocity-vector 
components u and v, and pressure p to be dimensionless relative to the quantities L*U *-I, 
L*, U*, 9*U .2, respectively (L* and U* are the characteristic length and characteristic velo- 
city of the jet, 9" is the density of the incompressible fluid). At large Re = U*L*/v* (v* 
is the kinematic viscosity), the wall jet is analogous to a boundary layer, while the unper- 
turbed profile U 0 of the longitudinal velocity component in the jet is dependent on the vari- 
able Ym = Rel/2Y �9 The subsequent analysis is based on properties of the function U 0 which 
follow from the type of motion being studied. Specifically, at the outlet of the jet (with 
an increase in Ym) and near the solid surface Ym = 0 which bounds the jet from below, 

Uo--+O, dUo/dYm-+O , Ym-+OO, 

Uo.-+gtYm + X~Y~ + . ; . ,  Ym--+O. (i.i) 

Let there be a perturbation of the longitudinal velocity component of the order 6 in 
the flow. Such a perturbation can be created, for example by placing a small obstacle of 
a height on the order of y = O(Re-I/26) on the surface being traversed by the flow. We will 
use X to denote the characteristic scale of the length of the perturbation wave. Then the 
continuity equation gives us the order of the perturbation of the vertical velocity component 
v = O(Re-I/261 -I) in the main mass of the jet at Ym = O(i). Equating the orders of the terms 
of the conservation equation to the vertical component of the momentum 8p/By - U08v/Sx ~ 
Re-I/261-2, we can easily evaluate the pressure perturbation Ap = O(Re-161-2). On the other 
hand, near the wall, where the perturbation of velocity u is of the same order as the velo- 
city itself, the conservation equation for the longitudinal component of momentum gives 8p/ 
8x ~ uSu/Sx, i.e., Ap = 0(62). Comparing both estimates for Ap, we obtain the order of the 
wavelength of the perturbation i = O(Re-i/26-I/2). These estimates make it possible to rep- 
resent the solution of the Navier-Stokes equations in the main body of the jet in the form 

u = Uo + 8Ulm + 6~u2,~ -6 .. . .  v = 63/2v1,~ + 65/~v2,~ + . . . ,  

p = poo "t- 62Pin + 63pan + ... 
(1.2) 

Here, all of the sought perturbin~ functions with the indices im and 2m depend on the vari- 
T I/2 172 i/2 r ables = Rel/263/2t, X = Re 6 x, Ym = Re y, while p~ is the pressu e on the upper boun- 

dary of the jet. The system of equations of the first approximation 

OUlm dU o OOlm OPlm O%m Ovlm 
Uo-gy-+v~d-y-j= O, Uo o x  - a - V ~ '  - ~  ~o-Y-2~ = o 
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leads to the explicit expressions [9, i0] 

Ym 
dU o OA t 09"At j' 

u~,~ -~ A~ (r ,  X) "h--Y-~' v,~ = --  - -~  U o (Y~), p,~ ---- 
oo 

U2dY~ o �9 ( 1 . 3 )  

It can be seen from (i.i) and (1.3) that Vlm+ 0 at Ym + 0, which indicates the need to con- 
sider the following terms of the expansion for v near the wall. Inserting (1.3) into the 
system of equations of the second approximation 

OUl rn Ou2m OUlm dUo Oul m OP lm 
Or -}- UO ~ + ulra ~ + V2ra ~ -@ vlm O'O~m ~- OX ' 

OPlm r OP2m Ol'~ lrt~ O~ OU2m OV2m 
or + 5 o-s + Ul'~ "'~f- + v'~ 5~-~ ~ = 0 ,  . . . .  oY.~' ox + 

we obtain 

OA 2 
v2m=--U~ OX 

Y?r~ 

OT dym'AI-J-K -[- UO - -  2 t2 - --1 t 

Yrn 

d ' I OPlm i t 
X Ym + Uo L OX )~ly m 2  ,2 (i  + 2~2X ~-tYrn)' dY,~ 

[as At(T, X), the functions A2(T, X) are arbitrary]. 

Let us find the limiting form of expansions (1.2) near the wall. 
0 we have 

u = ~ l Y m + S L 1 A l + . . . ,  

aal2~ OA1 6512(0AI OA1 A OaA1) 

~2 02A1 
p =  p = - -  h - ' ~ 7 " +  . . . .  A - -  o U~dY~. 

0 

Using (i.i), at Ym § 

( l . 4 )  

The first two terms of asymptotic series (1.4) for u and v become of the same order if Ym = 
0(6). This serves as justification for separately examining the wall region, where the new 
variable Y a = 6-1Ym is on the order of unity. We seek the solution in the form 

u = 6ua  + . . . ,  v = 857v,, + . . . ,  p = p |  + 6~p,~ + . . .  ( 1 . 5 )  

Substitution of Eqs. (1.5), with the functions ua, Va, and p= dependent on T, X, and 
Ya = Rel/26-1y, into the system of Navier-Stokes equations yields 

ouo o,,~ o~o opo O ( I t e - ~ / 2 ~ - v ~  
-b-f + Ua - g f  + V " -g-f-~ = - O X + 

OPa --- O, Oua OVa 
oY~ ~ + ~ =- O. 

(1.6) 

The symbol O in the conservation equation for the longitudinal component of momentum denotes 
i/7 the order of the viscous terms. At 6 = O(Re- ), the nonlinear boundary sublayer Y = (i) 

is viscous. This case was studied in [9, I0]. Below, we propose that 6 >> Re -I/7. ~he 
-1/2 the nonlinear region, of the thickness y = O(Re 6), is in turn divided into an inviscid 

main part, where Ya = O(I) add the viscous terms in the first equation of system (1.6) are 
small, and a viscous sublayer directly adjacent to the surface in the flow, where Ya - 
(Re-1726-7/2) 1/2 ~ 1. 

System (1.6), with the discarded viscous terms, must be augmented by the boundary condi- 
tion of impermeability on the wall and limiting conditions on the upper edge of the nonlinear 
region. These conditions are given by Eqs. (1.4), rewritten relative to the variable Y=. 
It is not hard to see that the functions 
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u a ~ s  @ JhA1, 

OA l OA 1 OA 1 A O~AI O~ ( 1 . 7  ) 
Ua = - -  )L1 ~ }Ta OT ~'1A1 -o-X- -{- X 1 o x  3 ' Pa == - -  A o x ,  ~ , 

ensuring satisfaction of the combining conditions at Ya + ~, are the solution of nonlinear . 
system (1.6). The impermeability condition remains to be satisfied. Let the source of the 
perturbations be the above-mentioned roughness on the surface in the flow. The form of this 
roughness is described by the equation Y= = G(T, X). Then the boundary condition has the 

form 

OG OG 
Va OT - -  o x  Ua at  Y a  = a .  ( 1 . 8 )  

For the functions ua and Va given by Eqs. (1.7), condition (1.8) leads to the inhomo- 
geneous Korteweg-de Vries equation 

OA A OA OSA c93G ( 1 .  9 ) 
07 + -  -87 = Ox3 ~ (t, Z), A = A t  + G, q) ---- Ox--g,; 

in which we performed the transformation of the independent variables T = Xx-2AI/2t, X = 
%1-1A1/2x in order to eliminate the constants ~ and A. For normal injection from a plane 
surface Y = 0 with the velocity Va = v n, in Eq. (1.9) the inhomogeneous term cp = ~1-2A1/2Vn . 

If the function A is found from unidimensional equation (1.9), then the two-dimensional 
velocity field and pressure are completely determined both in the nonlinear sublayer and in 
the main body of the jet. 

2. Let us return to the solution of Eq. (1.9) and the Burgers equations obtained in [2] 

OA AOA O~'A 
_ ~ - ~ - r  (2 1) 
at -}- Ox - -  Ox ~ 

as  w e l l  as  t h e  Benjamin-Onoe  e q u a t i o n  [3,  4] 

OA A OA t i ~ 
~f q Ox = --~ " - ~ - ~ T  d~ - -  (~ ( t, x) .  

- - o o  

(2.2) 

Given certain assumptions, Eqs. (2.1)-(2.2) reduce to the problem of the nonsteady inter- 
action of inviscid perturbations in a boundary layer with a supersonic and subsonic gas flow, 
respectively. The function ~ in the right sides of (2.1) and (2.2) is proportional to the 
rate of normal injection or is connected with the presence of an obstacle on the surface in 
the flow. 

Equations (1.9), (2.1), and (2.2) describe the nonlinear evolution of perturbations with 
the wavelength ~, dependent on the amplitude 6 and exceeding the characteristic transverse 
dimension of the flow of the order Re -I/2. Meanwhile, the value 6 ~ 1 should be large com- 
pared to the scale of the amplitude in the asymptotic theory [6-10] where viscosity plays 
the deciding role. In particular, in regard to jet flow about a plane wall, the amplitude 
restriction is expressed by the inequality 6 ~ Re -I/7. 

Figure 1 (t = 9.75) shows the numerical solution of the Korteweg-de Vries equation (1.9) 
with zero initial data and an inhomogeneous term in the right side given by the expression 
~(t, x) = -2 sin(2~t) sin(~x/5) in the rectangle 0 < x < 5, 0 < t < 0.5. Here ~(t, x) = 0 
outside the rectangle. We thus modeled momentary suction from the wall jet through the slit. 
It can be seen from Fig. 1 that the local perturbation introduced is transformed into a wave 
packet propagating in the direction of an increase in x. The maximum peak is shifted down- 
flow somewhat from the slit and decays slightly with time; new maxima and minima are genera- 
ted in the leading part of the packet. 

A different picture is seen when perturbations are continually introduced into the flow. 
This is evident from Figs. 2 and 3, which show the solutions of Eq. (1.9) for ~ = (~2/Sx2)(x + 
/x 2 + a 2), a = 0.5, and A = 0 at t = 0. The dashed curve in Fig. 2 shows the distribution 
of -A at the moment of time t = 4.35. The curve indicates the formation of a wave packet 
which propagates downflow. In the region in which the external perturbations (near x = 0) 
described by the function ~ are influential, the function IAI gradually increases over time 
until the conditions for the isolation of a solitary wave are satisfied. The solid curve 
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corresponding to t = 8.9 illustrates the process of generation of the first such wave. Over 
time~ solitary waves are periodically generated at the site of introduction of the perturba- 
tions and propagate in the form of a chain in the direction of negative x (Fig. 3~ t = 21.7). 
The wave packet propagates in the direction of positive x with an increase in the character- 
istic period and a slight increase in amplitude. 

As an example, for Eq. (2.2) we numerically solved a problem with zero Cauchy data on 
the assumption that T(t, x) = 1 at 0 < x < 0.5 and T(t, x) = 0 outside this interval. Figure 
4 shows the quantity -A as a function of x for t = 22.6. The presence of the inhomogeneous 
term also leads to the formation of a group of solitary waves which propagate upflow from 
the perturbation region and a wave packet which moves downflow. 

3. Steady-state inviscid equations describe the attached region of a supersonic flow 
[ii] and flow in the neighborhood of boundary-layer separation on a surface moving downflow 
[12]. Two examples of nonsteady locally inviscid flows with an interaction obeying the Bur- 
gers equation were presented in [13]: supersonic flow about a plate with a periodically vib- 
rating flap; and the propagation along the plane surface of a wedge of perturbations caused 
by a sudden change in the pressure gradient on its trailing edge. 

We will examine the problem of the interaction of a boundary layer on a plate in a super 
sonic flow with a shock wave incident on the plate at the moment of time t = 0. We will as- 
sume that the pressure discontinuity, referred to the velocity head at infinity, is an order 
of magnitude greater than Re -I/4 but remains small. Then Eq. (2.1), with the inhomogeneous 
term ~ = p06(x) (where 6(x) is the delta function and P0 > 0) is valid in the region of the 
perturbed boundary layer. Here, P0 is the dimensionless [6-8] pressure behind the shock wave 
with allowance for its reflection at the point x = 0. An inhomogeneous term of this type 
can also be interpreted as a consequence of deflection of the flap on the plate. 

Assuming that A = 0 at t = 0, and performing the Cowle-Hopf transformation [14], A = 
-2B-18B/~x, we arrive at the linear problem 

Po /0, x < 0, dB o 
o~ ~ § y 0 (x) B,  O (x) = / B (0, x) = B o, = 0. ( 3 . 1 )  
ot Ox 2 t ,  x > O ,  -77"x 

As a result of the Laplace transformation B ( s , x ) = ~ B ( t , x ) e - ~ t d t  , it ~ollows from (3.1) 
0 that 
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~:_ Bo [ ( t '~1/2 ] B o 
t ~ - K + e x p -  s---~po) xj, x > O ,  B:--z+K_exp(s~/2x),  

s - - yp  o 
x < O .  

The coefficients K_ and K+ are found from the 
g and its first derivative at the point x = O: 

requirement of continuity of the function 

s l / 2  

P~176 ~1/2 81/2 | , K+ - - -  [ 1 ~1/2 K_. 
2s(s--2poj'/2[~s--2Poj[ i ~ ' [  i-- _]_ ] ~s--'2Po) 

Changing over from the transforms to the originals, for x > 0 we find 

(')(�9 B ~ B o exp -g po t erf @ BoI (Po, t), 
t 

; ) 1 1 exp - -  + 1 
I (Po, t) = E- V~ (t -- ~1 4f" ~ pot  dT. 

0 

Similarly, for x < 0 we have the expression 

B=Boer f { Ix l  ~ (t  ) /,2 l / t ]  ~ B~ exp ~-pot I (-- Po, t). 

We reduce the convolution-type integral l(p0, t) to the form 

l i : exp --$Fltt + ~Po--~  d~, I (Po, t) = ~- I ~ (~ --  1)-1/2 
1 

(3.2) 
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which is convenient for its evaluation at t ~ ~. The maximum of the function in the exponent 
of the integrand in (3.2) is reached at the lower boundary D = 1 of the interval of integra- 
tion, while the maximum of this function in the interval I(-p0, t) is reached at the point 

= 2~p0t/Ix I . The use of the Laplace method to asymptotically evaluate the integral I(p0, 
t) over large times gives 

A= 2 x > 0 .  
x + (2/po)~/2 ' ( 3 . 3 )  

The a s y m p t o t e  I ( - P o ,  t )  depends  on I x l / t .  With f i x e d  x and t ~ ~,  we have  A = 2 -~ po ,  
x < 0. For finite values ~ = x + ~p0----~t, the solution at t ~ ~ is expressed by the formula 

A = - -  7 i + t h  x +  : f i t  + ~ - l n - -  , 

x < 0 .  

(3.4) 

It folows from (3.4) that a separation wave and a__~essure pulse propagate upflow with 
a nondecaying amplitude and the phase velocity D = -~/p0/2 + O(t-1). 

The problem of a sudden pressure drop behind the point x = 0 to P0 < 0 is solved from 
the results obtained above by making the substitutions A + -A, x + -x, t + t, P0 + IP01. In 
particular, a reduction in external~e is accompanied by the downflow propagation of 
a wave with the phase velocity D = Vlp01/2. 

Solid lines 1-3 in Fig. 5 show the numerically constructed distributions of -A(t, x) 
for P0 = 3 at t = 30, 20, and i0. The distributions of total pressure p(x) = p0e(x) - 8A/Sx 
for the same times are shown by the dashed lines. In the region of the wave front, it is 
completely determined by the self-induced part -SA/Sx, while near x = 0 the pressure is deter- 
mined by the external and self-induced components. Located between them is a region with 
zero pressure. Over time, the size of this region increases in accordance with the motion 
of the wave. The circles show the function -A(t, x) calculated from asymptotic formulas (3.3) 
and (3.4). 

The function A(t, x) found here can be used to construct the two-dimensional flow pat- 
tern. It is shown in Fig. 6 for the same calculation variant at t = 30. In this figure, 
lines 1-14 correspond to the values of the stream function -2.5, -1.5, -i.0, 0, 0.i, 1.0, 
3.0, 6.0, i0, 15, 21, 28, 30, 45. 

The solutions of the Burgers equation suggest that decay of the shock wave leads to the 
formation of a broad separation zone which extends upflow. Within the framework of the chosen 
model, the velocity of the leading edge of this zone is constant and is determined by the 
amplitude of the external perturbation. As regards the amplitude of such a separation wave, 
it remains constant over time and is unambiguously related to the rate of propagation upflow. 
Another action that would be just as effective in generating a separation wave in the boundary 
layer is steady slit injection of gas. 

In studies which have involved numerical calculation of flow near an inflection point 
on a surface or a drop in external pressure on the basis of viscous equations of the theory 
of free interaction [6-8], investigators have noted either that the convergence of the finite- 
difference schemes deteriorates or that oscillatory regimes with an increase in the amplitude 
of the perturbing factor develop [15, 16]. It follows from the above that given sufficiently 
large angles of deflection of the surface or sufficiently high intensities of the incident 
shock wave, when inviscid equation (2.1) is valid, the problem has no steady-state solution. 
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MEASUREMENT OF TURBULENCE CHARACTERISTICS IN COMPRESSIBLE 

BOUNDARY LAYERS NEAR SEPARATION ZONES 

A. A. Zheltovodov, u A. Lebiga, and V. N. Yakovlev UDC 532.526.5 

Separated flows, distinguished by their great variety, are widely encountered in nature 
and in technology [i]. Until now, predicting their properties has been one of the most com- 
plex problems in fluid mechanics. Particular difficulties are encountered when analyzing 
turbulent separation due to the lack of a rigorous theoretical foundation. Most of the theo- 
retical studies that have been conducted have involved the development of models of ideal 
liquids and gases and integral methods of jet and wake theory. Another focus has been the 
improvement of numerical methods of solving averaged Navier-Stokes equations with the use 
of semiempirical models of turbulence [2]. These directions of study have been taken in large 
part because of the available experimental data, which has been used to construct physical 
models of separated flows and to substantiate closing relations. In light of this, experi- 
ments now conducted in this field must necessarily be comprehensive in character. 

The main difficulties encountered in experimentally studying compressible separated flows 
are related to measurements of turbulence characteristics in boundary layers. Such studies 
can be conducted on the basis of the use of laser-Doppler measurements of velocity or hot-wire 
anemometric instrumentation. Along with the familiar advantages and disadvantages of each 
method, the use of hot-wire anemometry allows the measurement of fluctuations of both gasdy- 
namic and thermodynamic parameters. The presence of high-frequency pulsations of pressure, 
density, temperature, and velocity in a supersonic flow predetermines the requirements that 
must be met by hot-wire anemometric instruments and the measurement techniques. The possi- 
bility of broadly varying the temperature of the wire sensor T w with a constant frequency 
range (which is necessary to separate pulsations of mass rate <pu> and stagnation tempera- 
ture <To> )is the main advantage of direct-current hot-wire anemometers (DCA) compared to 
fixed-resistance hot-wire anemometers (FRA) [4]. Another important advantage is that the 
DCA makes it possible to measure the internal noise of the instrument. 
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